top of page
RESEARCH
Our group develops methods for decision-making in the real world.
A “real-world” method is compatible with the world as it is, not with some idealized notion of it. Real-world methods are
necessary to solve practical problems
valid without making unrealistic assumptions
accessible to users
The tools we build are generally categorized in the fields of nonparametric statistics, causal inference, and machine learning. Our problem areas include risk modeling with electronic health records, randomized trial design, and comparative effectiveness studies.
EXAMPLES
Fast-converging, scalable supervised learning.
Easy semiparametric probabilistic regression.
Unbiased use of old data in randomized experiments.
Research: Research
bottom of page